Search results for "Spatio-temporal point processes"

showing 10 items of 12 documents

Minimum contrast for point processes' first-order intensity estimation

2023

In this paper, we exploit some theoretical results, from which we know the expected value of the K-function weighted by the true first-order intensity function of a point pattern. This theoretical result can serve as an estimation method for obtaining the parameter estimates of a specific model, assumed for the data. The only requirement is the knowledge of the first-order intensity function expression, completely avoiding writing the likelihood, which is often complex to deal with in point process models. We illustrate the method through simulation studies for spatio-temporal point processes.

Second-order characteristics Spatial statistics Spatio-temporal point processes Local models Minimum contrastSettore SECS-S/01 - Statistica
researchProduct

Inhomogeneous spatio-temporal point processes on linear networks for visitors’ stops data

2022

We analyse the spatio-temporal distribution of visitors' stops by touristic attractions in Palermo (Italy) using theory of stochastic point processes living on linear networks. We first propose an inhomogeneous Poisson point process model, with a separable parametric spatio-temporal first-order intensity. We account for the spatial interaction among points on the given network, fitting a Gibbs point process model with mixed effects for the purely spatial component. This allows us to study first-order and second-order properties of the point pattern, accounting both for the spatio-temporal clustering and interaction and for the spatio-temporal scale at which they operate. Due to the strong d…

Statistics and ProbabilityLog-Gaussian Cox processeSpatio-temporal point processesIntensity estimationGlobal Positioning SystemModeling and SimulationGibbs point processeLinear networkStatistics Probability and UncertaintySettore SECS-S/01 - StatisticaThe Annals of Applied Statistics
researchProduct

A multi-scale area-interaction model for spatio-temporal point patterns

2018

Models for fitting spatio-temporal point processes should incorporate spatio-temporal inhomogeneity and allow for different types of interaction between points (clustering or regularity). This paper proposes an extension of the spatial multi-scale area-interaction model to a spatio-temporal framework. This model allows for interaction between points at different spatio-temporal scales and the inclusion of covariates. We fit the proposed model to varicella cases registered during 2013 in Valencia, Spain. The fitted model indicates small scale clustering and regularity for higher spatio-temporal scales.

FOS: Computer and information sciencesStatistics and ProbabilityScale (ratio)Computer scienceManagement Monitoring Policy and LawMulti-scale area-interaction modelcomputer.software_genreVaricella01 natural sciencesPoint processMethodology (stat.ME)010104 statistics & probability0502 economics and businessStatisticsCovariate60D05 60G55 62M30Point (geometry)0101 mathematicsComputers in Earth SciencesCluster analysisStatistics - Methodology050205 econometrics 05 social sciencesInteraction modelExtension (predicate logic)Gibbs point processesComputingMethodologies_PATTERNRECOGNITIONSpatio-temporal point processesData miningcomputer
researchProduct

Weighted local second-order statistics for complex spatio-temporal point processes

2019

Spatial, temporal, and spatio-temporal point processes, and in particular Poisson processes, are stochastic processes that are largely used to describe and model the distribution of a wealth of real phenomena. When a model is fitted to a set of random points, observed in a given multidimensional space, diagnostic measures are necessary to assess the goodness-of-fit and to evaluate the ability of that model to describe the random point pattern behaviour. The main problem when dealing with residual analysis for point processes is to find a correct definition of residuals. Diagnostics of goodness-of-fit in the theory of point processes are often considered through the transformation of data in…

spatio-temporal point processes diagnostics K-function weighted second-order statistics
researchProduct

Local Spatio-Temporal Log-Gaussian Cox Processes for seismic data analysis

2022

We propose a local version of the spatio-temporal log-Gaussian Cox processes (LGCPs) employing the Local Indicators of Spatio-Temporal Association (LISTA) functions into the minimum contrast procedure to obtain space as well as time-varying parameters. We resort to the joint minimum contrast method fitting method to estimate the set of second-order parameters for the class of Spatio-Temporal LGCPs. We employ the proposed methodology to analyse real seismic data occurred Greece between 2004 and 2015.

Earthquakes Second-order characteristics Spatio-temporal point processes Local models Log-Gaussian Cox Processes Minimum contrastSettore SECS-S/01 - Statistica
researchProduct

Locally weighted minimum contrast estimation for spatio-temporal log-Gaussian Cox processes

2023

A local version of spatio-temporal log-Gaussian Cox processes is proposed by using Local Indicators of Spatio-Temporal Association (LISTA) functions plugged into the minimum contrast procedure, to obtain space as well as time-varying parameters. The new procedure resorts to the joint minimum contrast fitting method to estimate the set of second-order parameters. This approach has the advantage of being suitable in both separable and non-separable parametric specifications of the correlation function of the underlying Gaussian Random Field. Simulation studies to assess the performance of the proposed fitting procedure are presented, and an application to seismic spatio-temporal point pattern…

Methodology (stat.ME)FOS: Computer and information sciencesLocal models log-Gaussian Cox processes Minimum contrast Second-order characteristics Spatio-temporal point processesStatistics and ProbabilityComputational MathematicsComputational Theory and MathematicsApplied MathematicsSettore SECS-S/01 - StatisticaStatistics - ComputationStatistics - MethodologyComputation (stat.CO)Computational Statistics & Data Analysis
researchProduct

Self-exciting point process modelling of crimes on linear networks

2022

Although there are recent developments for the analysis of first and second-order characteristics of point processes on networks, there are very few attempts in introducing models for network data. Motivated by the analysis of crime data in Bucaramanga (Colombia), we propose a spatiotemporal Hawkes point process model adapted to events living on linear networks. We first consider a non-parametric modelling strategy, for which we follow a non-parametric estimation of both the background and the triggering components. Then we consider a semi-parametric version, including a parametric estimation of the background based on covariates, and a non-parametric one of the triggering effects. Our mode…

Statistics and Probability22/3 OA procedureHawkes processeCovariatecrime datacovariatesself-exciting point processesSelf-exciting point processeSpatio-temporal point processesITC-ISI-JOURNAL-ARTICLELinear networklinear networksspatio-temporal point processesCrime dataStatistics Probability and UncertaintySettore SECS-S/01 - StatisticaHawkes processesStatistical modelling
researchProduct

Spatial cumulant models enable spatially informed treatment strategies and analysis of local interactions in cancer systems

2023

AbstractTheoretical and applied cancer studies that use individual-based models (IBMs) have been limited by the lack of a mathematical formulation that enables rigorous analysis of these models. However, spatial cumulant models (SCMs), which have arisen from theoretical ecology, describe population dynamics generated by a specific family of IBMs, namely spatio-temporal point processes (STPPs). SCMs are spatially resolved population models formulated by a system of differential equations that approximate the dynamics of two STPP-generated summary statistics: first-order spatial cumulants (densities), and second-order spatial cumulants (spatial covariances).We exemplify how SCMs can be used i…

Cancer eco-evolutionApplied MathematicsMarkovin ketjut3122 CancersSpatial momentsMathematical oncologypopulaatiodynamiikkaAgricultural and Biological Sciences (miscellaneous)syöpäsolutIndividual-based modelsSpatio-temporal point processesModeling and Simulation111 MathematicsSannolikhetsteori och statistikonkologiamatemaattiset mallitProbability Theory and Statistics
researchProduct

Spatio-Temporal Linear Network Point Processes for GPS Data Analysis

This work aims at analyzing the spatio-temporal intensity in the distribution of stop locations of cruise passengers during their visit at the destination. Data are collected through the integration of GPS tracking technology and questionnaire-based survey on a sample of cruise passengers visiting the city of Palermo (Italy), and they are used to identify the main determinants which characterize cruise passengers’ stop locations pattern. The spatio-temporal distribution of visitors' stops is analysed by mean of the theory of stochastic point processes occurring on linear networks, in order to consider the street configuration of the city and the location of the main attractions. First, an i…

Gibbs point processes Intensity estimation Linear networks Log-Gaussian Cox Processes Spatio-temporal point processesSettore SECS-S/01 - Statistica
researchProduct

Hawkes processes on networks for crime data

2022

Motivated by the analysis of crime data in Bucaramanga (Colombia), we propose a spatio-temporal Hawkes point process model adapted to events living on linear networks. We first consider a non-parametric modelling strategy, for both the background and the triggering components, and then we include a parametric estimation of the background based on covariates, and a non-parametric one of the triggering effects. Our network model outperforms a planar version, improving the fitting of the self-exciting point process model.

Spatio-temporal point processesHawkes processeCovariateLinear networkCrime dataSettore SECS-S/01 - Statistica
researchProduct